2013年11月24日 星期日

Service Dynamics Products & Services

Over the last few years a number of automation vendors have announced various services including outsourced maintenance, system integration, manufacturing and business process consulting, and remote operations. I wonder if an automation vendor can continue to be effective as both a product company and services provider.

To clarify the difference, let’s start by defining what I mean by services and products. By providing services, automation vendors engage with customers to perform labor and knowledge intensive tasks that may include system design, engineering services, system integration, preventative maintenance, remote operations, and other services. By providing products, automation vendors sell something to the customers, system integrators and engineering firms that they will apply to accomplish automation tasks in manufacturing and process environments.
Service Dynamics

The primary objective of a service company should be to focus on the development a system solution that is uniquely suited to the idiosyncrasies of the client’s business without being tethered by particular product solution offerings. A big part of this is the ability to deploy technologies from appropriate sources using integration and engineering skills to achieve a superior result for the client. Service businesses need to have effective and refined project, personnel, and quality management systems. The growth and effectiveness of these businesses is directly related to adding and managing smart people and this is a unique business proficiency mastered by successful service organizations. Pure service businesses have an advantage of successfully maintaining alliances with a range of product vendors that cannot be logically achieved by product vendors who provide services. This separation positions a pure service business to use best of breed and get the most out of vendors. For comparison, consider you are a smartphone user and the only place to get apps was your phone hardware vendor.

refer to:http://www.automation.com/portals/factory-discrete-automation/can-automation-vendors-serve-two-masters-products-services

2013年11月14日 星期四

Acrosser unveils its ultra slim fanless embedded system with 3rd generation Intel core i processor


Acrosser Technology Co. Ltd, a world-leading industrial and embedded computer designer and manufacturer, announces the new AES-HM76Z1FL embedded system. AES-HM76Z1FL, Acrosser’s latest industrial endeavor, is surely a FIT under multiple circumstances. Innovation can be seen in the new ultra slim fanless design, and its Intel core i CPU can surely cater for those seeking for high performance. Therefore, these 3 stunning elements can be condensed as "F.I.T. Technology." (Fanless, Intel core i, ultra Thin)
The heat sink from the fanless design provides AES-HM76Z1FL with great thermal performance, as well as increases the efficiency of usable space. The fanless design provides dustproof protection, and saving the product itself from fan malfunction. AES-HM76Z1FL has thin client dimensions, with a height of only 20 millimeters (272 mm x183 mm x 20 mm). This differs from most embedded appliances, which have a height of more than 50 millimeters.
The AES-HM76Z1FL embedded system uses the latest technology in scalable Intel Celeron and 3rd generation Core i7/i3 processors with a HM76 chipset. It features graphics via VGA and HDMI, DDR3 SO-DIMM support, complete I/O such as 4 x COM ports, 3 x USB3.0 ports, 8 x GPI and 8 x GPO, and storage via SATA III and Compact Flash. The AES-HM76Z1FL also supports communication by 2 x RJ-45 gigabit Ethernet ports, 1 x SIM slot, and 1 x MinPCIe expansion socket for a 3.5G or WiFi module.
Different from most industrial products that focus on application in one specific industry, the AES-HM76Z1FL provides solutions for various applications through the complete I/O interfaces. Applications of the AES-HM76Z1FL include: embedded system solutions, control systems, digital signage, POS, Kiosk, ATM, banking, home automation, and so on. It can support industrial automation and commercial bases under multiple circumstances.
Key features:
‧Fanless and ultra slim design
‧Support Intel Ivy Bridge CPU with HM76 chipset
‧2 x DDR3 SO-DIMM, up to 16GB
‧Support SATA III and CF storage
‧HDMI/VGA/USB/Audio/GPIO output interface
‧Serial ports by RS-232 and RS-422/485
‧2 x GbE, 1 x SIM, and 1 x MiniPCIe(for3G/WiFi)


Contact us:

2013年11月11日 星期一

Rugged COM Express: Empowering high-performance automation for an increasingly connected world

What’s needed is a modular embedded computing architecture that addresses these cost and downtime issues. Perhaps the most compelling of the modular architectures available today is COM Express. COM Express provides the requisite computing power for today’s increasingly connected world while also extending the lifespan of the underlying system. As chip technology evolves, users can switch out the module without adverse effect on the underlying hardware and assets – saving time and money. The modularity, simplicity, and reliability of COM Express technology help businesses remain competitive, profitable, and flexible.

Leveraging upgrades in processing power
COM Express-based technology was developed in 1994 by PICMG, a 250-company consortium that develops open specifications for high-performance computing applications. Today, the COM Express form factor comes in four sizes:
Mini: 55 x 84 mm
Compact: 95 x 95 mm
Basic: 95 x 125 mm
Extended: 110 x 155 mm
These different sizes of COM Express modules help businesses to remain competitive by maximizing the performance of critical infrastructure systems in an increasingly connected world in any conceivable industrial application.

The need for improved performance is evidenced by continuous new product introductions by processor manufacturers such as Intel, AMD, and others. Whether it is better threading, more cores, better graphics, lower power, or higher clock speeds, these companies continuously respond to demand for more and faster computing across the board – whether on the desktop or in embedded industrial systems. But replacing a complete subassembly or subsystem each time a compelling new generation of technology becomes available is time-consuming, expensive, and risky. And yet the need to leverage greater levels of processor power and performance is an imperative. Separating the processor module from the underlying carrier means that technology upgrade is painless and affordable.

refer to:http://industrial-embedded.com/articles/rugged-increasingly-connected-world/

2013年11月4日 星期一

Older posts UAV software development using model-based

An in-the-loop testing strategy is often used as itemized below and summarized in Table 2:
1. Simulation test cases are derived and run on the model using Model-In-the-Loop (MIL) testing.
2. Source code is verified by compiling and executing it on a host computer using Software-In-the-Loop (SIL) testing.
3. Executable object code is verified by cross-compiling and executing it on the embedded processor or an instruction set simulator using Processor-In-the-Loop (PIL) testing.
4. Hardware implementation is verified by synthesizing HDL and executing it on an FPGA using FPGA-In-the-Loop (FIL) testing.
5. The embedded system is verified and validated using the original plant model using Hardware-In-the-Loop (HIL) testing.
A requirements-based test approach with test reuse for models and code is explicitly described in ARP4754A, DO-178C, and DO-331, the model-based design supplement to DO-178C.

refer to:
http://mil-embedded.com/articles/transitioning-do-178c-arp4754a-uav-using-model-based-design/